Borg-Type Theorems for Matrix-Valued Schrödinger Operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trace Formulas and Borg-type Theorems for Matrix-valued Jacobi and Dirac Finite Difference Operators

Borg-type uniqueness theorems for matrix-valued Jacobi operators H and supersymmetric Dirac difference operators D are proved. More precisely, assuming reflectionless matrix coefficients A,B in the self-adjoint Jacobi operator H = AS + AS + B (with S the right/left shift operators on the lattice Z) and the spectrum of H to be a compact interval [E−, E+], E− < E+, we prove that A and B are certa...

متن کامل

Trace Formulas and a Borg-type Theorem for Cmv Operators with Matrix-valued Coefficients

We prove a general Borg-type inverse spectral result for a reflectionless unitary CMV operator (CMV for Cantero, Moral, and Velázquez [13]) associated with matrix-valued Verblunsky coefficients. More precisely, we find an explicit formula for the Verblunsky coefficients of a reflectionless CMV matrix whose spectrum consists of a connected arc on the unit circle. This extends a recent result [39...

متن کامل

M - Function Asymptotics and Borg - Type Theorems

We explicitly determine the high-energy asymptotics for Weyl-Titchmarsh matrices associated with general Dirac-type operators on half-lines and on R. We also prove new local uniqueness results for Dirac-type operators in terms of exponentially small diierences of Weyl-Titchmarsh matrices. As concrete applications of the asymptotic high-energy expansion we derive a trace formula for Dirac operat...

متن کامل

Borg-type Theorems for Generalized Jacobi Matrices and Trace Formulas

The paper deals with two types of inverse spectral problems for the class of generalized Jacobi matrices introduced in [9]. Following the scheme proposed in [5], we deduce analogs of the Hochstadt–Lieberman theorem and the Borg theorem. Properties of a Weyl function of the generalized Jacobi matrix are systematically used to prove the uniqueness theorems. Trace formulas for the generalized Jaco...

متن کامل

Borg–marchenko-type Uniqueness Results for Cmv Operators

We prove local and global versions of Borg–Marchenko-type uniqueness theorems for half-lattice and full-lattice CMV operators (CMV for Cantero, Moral, and Velázquez [15]). While our half-lattice results are formulated in terms of Weyl–Titchmarsh functions, our full-lattice results involve the diagonal and main off-diagonal Green’s functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2000

ISSN: 0022-0396

DOI: 10.1006/jdeq.1999.3758